NOTE

The System GeO₂-MnO-Mn₂O₃ at 900°C

In a previous paper (1), we reported the phase diagram of GeO₂-FeO-Fe₂O₃. Some new compounds were found in the system, and the diagram is guite different from the corresponding one of SiO_2 -FeO-Fe₂O₃. In the present work, we report the phase diagram of GeO₂-MnO-Mn₂O₃. Two ternary compounds, MnGeO₃ and Mn₂GeO₄, are known and Mn₂GeO₄ has a olivine-type structure in contrast to the spinel-type structure of Fe_2GeO_4 (2, 3). Moreover, Mn_2O_3 is structurally different from Fe_2O_3 and Mn₃O₄ has a distorted spinel structure at the present experimental temperature (4). It is interesting to compare the present system with those of GeO_2 -FeO-Fe₂O₃ and $SiO_2-MnO-Mn_2O_3$ (5) which have been already established.

GeO₂ (99.99%) and MnO₂ (99.9%) were used as starting materials. MnO and Mn_2O_3 were prepared from MnO₂ according to the method described previously (6). GeO₂ was calcined at 1000°C before using. The three materials, GeO₂, MnO, and Mn₂O₃, were mixed to desired ratios in an agate mortar with ethyl alcohol. The mixture (about 2 g) thus obtained was sealed in an evacuated silica tube and was allowed to react at 900° \pm 2°C in a tubular-type furnace. The empty space of the tube was made to be as small as possible relative to the amount of the sample. When MnO-rich samples were fired, the inner surfaces of the silica tubes devitrified strongly. These samples were reexamined by using Pt tubes. The powder X-ray patterns of the two kinds of samples were, however, identical with each other. Every sample was fired in the furnace until its powder X-ray pattern did not change any more. It took about 80 hr for the samples to react fully. The identification of the compounds was carried out by means of powder X-ray data collected on the diffractometer described previously (1). About forty kinds of samples were fired and examined.

The phase diagram at 900°C is shown in Fig. 1. No ternary compounds were found in the system, except for MnGeO₃ and Mn_2GeO_4 . The experimental temperature was first set at 1000°C. Since equilibrium oxygen fugacities are very large in the twophase region GeO₂-Mn₂O₃ss (Mn₂O₃ss shows the solid solution described below) and three-phase region GeO₂-MnGeO₃-Mn₂O₃ss at 1000°C, the silica tubes sometimes burst when examinations were performed for these regions. The temperature was, therefore, lowered to 900°C. Even at this temperature, the equilibrium oxygen fugacities are larger than 1 atm in the above regions. This is related to the fact that $MnGeO_3$ is stable even in air at higher temperatures despite the divalent state of the manganese atoms. It is interesting to note that MnO is stable under oxygen fugacities less than about 10^{-8.9} atm at 900°C (6).

The solid solutions denoted by $Mn_{2-x}Ge_xO_3$ exist in the system, and the upper limit of x value is about 0.2. Along the solution line, the following cation substitution must occur.

$$2Mn^{3+} \rightarrow Ge^{4+} + Mn^{2+}.$$

Corresponding substitution has been found in the system $SiO_2-MnO-Mn_2O_3$ between Si^{4+} , Mn^{2+} , and Mn^{3+} (5). On the whole, the obtained phase diagram is geometrically identical with that of $SiO_2-MnO-Mn_2O_3$, and quite different from that of $GeO_2-FeO-Fe_2O_3$.

FIG. 1. The phase diagram of $GeO_2-MnO-Mn_2O_3$ at 900°C.

References

- E. TAKAYAMA, N. KIMIZUKA, K. KATO, H. YAMAMURA, AND H. HANEDA, J. Solid State Chem. 38, 82 (1981).
- A. TAUBER, J. A. KOHN, C. G. WHINFREY, AND W. D. BABBAGE, Amer. Mineral. 48, 555 (1963).
- 3. J. G. CREER AND G. J. F. TROUP, Solid State Commun. 8, 1183 (1970).
- A. F. WELLS, "Structural Inorganic Chemistry," 4th ed. Oxford Univ. Press, London (1975).
- 5. A. E. MORRIS AND A. MUAN, J. Metals 18, 957 (1966).
- W. C. HAHN, JR., AND A. MUAN, Amer. J. Sci. 258, 66 (1960).

Ε. ΤΑΚΑΥΑΜΑ

Acknowledgments

The present author expresses his sincere thanks to Professor T. Katsura, Tokyo Institute of Technology, and Dr. N. Kimizuka and Dr. K. Kato, National Institute for Research in Inorganic Materials, for their continuous encouragement and helpful suggestions. National Institute for Research in Inorganic Materials Sakura-mura, Niihari-gun, Ibaraki-ken 305, Japan

Received April 1, 1981